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Abstract 

 

We conduct an empirical investigation of the impact of queue management on patients’ 

average wait time and length of stay (LOS). Using an Emergency Department’s (ED) 

patient-level data from 2007 to 2010, we find that patients’ average wait time and LOS 

are longer when physicians are assigned patients under a pooled queuing system with a 

fairness constraint compared to a dedicated queuing system with the same fairness 

constraint. Using a difference-in-differences approach, we find the dedicated queuing 

system is associated with a 17 percent decrease in average LOS and a nine percent 

decrease in average wait time relative to the control group—a 39-minute reduction in 

LOS and a four-minute reduction in wait time for an average patient of medium severity 

in this ED. Interviews and observations of physicians suggest that the improved 

performance stems from the physicians’ increased ownership over patients and resources 

that is afforded by a dedicated queuing system, which enables physicians to more actively 

manage the flow of patients into and out of ED beds. Our findings suggest that the 

benefits from improved flow management in a dedicated queuing system can be large 

enough to overcome the longer wait time predicted to arise from non-pooled queues. We 

conduct additional analyses to rule out alternate explanations for the reduced average 

wait time and LOS in the dedicated system, such as stinting and decreased quality of 

care. Our paper has implications for health care organizations and others seeking to 

reduce patient wait time and LOS without increasing costs.  

 
Key words: pooling, fairness, queue management, strategic servers, empirical operations, health care 
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1. Introduction 
Improving efficiency and customer experience is a key objective for service organizations. Skillful 

application of operations management principles may help achieve these goals. In particular, queue 

management decisions—such as queue structure and job routing policies—may impact how long 

customers have to wait for service and their service times.  

Prior work has demonstrated through analytical models that pooling separate streams of identical 

customers into a single queue served by a bank of identical servers is more efficient than having a set of 

dedicated queues because pooling results in shorter wait times for service (Eppen 1979, Kleinrock 1976). 

Having a pooled queue structure leads to a reduction in wait time because it enables customers to be 

processed by any available server from a bank of servers, rather than having to wait for a specific server 

to become available. Prior work has also considered the effects on wait time of imposing a fairness 

constraint to queuing systems, such as a round robin (RR) routing policy in which customers are evenly 

distributed across servers independent of whether they are idle. This policy is “fair” to the servers because 

fast severs are not penalized for their speed by being assigned more customers than their slower 

coworkers, but it may be less efficient because it forces customers to wait for their assigned server even if 

that server is busy and another server is idle. That said, RR routing policies are not always less efficient 

than unfair routing policies. Using analytical models, Armony and Ward (2010) suggest that a pooled 

queuing system with a fairness constraint may, in fact, outperform a classical pooled queuing system 

when the arrival rate of customers is high. 

Analytical research suggests that pooling queues may not always yield the expected performance 

improvements (Debo et al. 2008, van Dijk and van der Sluis 2009, Hopp et al. 2007, Jouini et al. 2008, 

Loch 1998, Mandelbaum and Reiman 1998). For example, combining streams of customers who have 

different processing requirements can introduce inefficiencies that erode the benefits of pooling 

(Benjaafar 1995, Green and Nguyen 2001, Mandelbaum and Reiman 1998, Rothkopf and Rech 1987). In 

addition, the perceived unfairness of a pooled queue, in which faster servers are assigned more customers 

than their peers, may negatively impact the speed at which servers work (Doroudi et al. 2011). Thus, the 

overall impact of queue pooling in service settings is ambiguous. 

To our knowledge, there have been few field-based, empirical studies on the impact of pooled versus 

dedicated queue management systems on the speed of service. This is an important omission because, in 

service settings, servers can adjust how they manage their work to increase or decrease their service rate 

(Doroudi et al. 2011, Hopp et al. 2009). Operations management scholars advocate for more studies that 

examine how human behavior can alter the dynamics between operational variables and performance 

(Boudreau et al. 2003, Jouini et al. 2008). Thus, empirical research that examines the impact of queue 

structure on servers’ behaviors can provide new insights for operations management theory and increase 



 4 

the relevance of queuing theory and research to practice.  

To address this gap, we leverage the introduction of a new policy that changed the queuing system in 

only one part of a hospital’s Emergency Department (ED), but not the other, from a pooled system to a 

dedicated system. The parallel trend in performance of the two parts of the ED before the queuing system 

change, and the fact that the change affected only one part of the ED, allows us to use a difference-in-

differences approach to empirically test the impact of a change in the structure of the queuing system on 

the average wait time to be seen by an ED physician and the average length of stay (LOS) in the ED. LOS 

is a measure of service time and starts with the time the physician begins delivering care to the patient and 

ends with either a bed request for admission to the hospital or the discharge of a patient to home or to an 

outside facility. We use the term LOS rather than service time to more clearly convey that this measure 

encompasses both (a) the value-added time when clinicians are providing care, as well as (b) the time that 

the patient is occupying an ED bed but is not receiving active care (e.g., when the physician is waiting for 

test results or treating other patients).  

The ED under study switched from a pooled to a dedicated queuing system to be able to handle the 

larger volume of patients predicted to occur due to the closing of a nearby ED. For both the pooled and 

dedicated queuing systems, a fairness constraint in the form of a RR routing policy was used to assign 

patients to physicians. The ED had this policy because physicians were paid a fixed salary and did not 

receive additional compensation for treating more patients or working more hours than scheduled. As a 

result, there were few financial incentives available to increase physician productivity, and instead, work 

was allocated equally among physicians. Using a difference-in-differences approach, we find that, on 

average, the use of a dedicated queuing system with a RR routing policy as a fairness constraint—after 

controlling for individual patient, physician, time, and ED characteristics—is associated with a 17 percent 

decrease in patients’ average LOS and a nine percent decrease in their average wait time relative to the 

control group. This represents a 39-minute reduction in LOS and a four-minute reduction in wait time—a 

meaningful time savings for the ED.  

Operations management theory suggests a possible reason why the pooled queuing system with a 

fairness constraint is associated with a longer average LOS than the dedicated queuing system with a 

fairness constraint. Similar to workers in other service settings (Debo et al. 2008, Hasija et al. 2010, Tan 

and Netessine 2013), physicians in the dedicated queuing system are strategic servers who change their 

behaviors in response to their assigned responsibilities and ownership over the work routines and 

resources needed to accomplish those responsibilities (Cachon and Zhang 2007, Gilbert and Weng 1998, 

Hopp et al. 2007, 2009). Interviews with physicians suggest that, in this context, the increased ownership 

that stems from a dedicated queuing system with a fairness constraint leads to a situation in which the 

improvements in service rates due to better flow management are greater than the variability-buffering 
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benefits of a pooled queuing system with a fairness constraint.  

This paper makes a contribution to the literature on queue pooling because prior research has 

emphasized customer behaviors that reduce the process losses of dedicated queues, but fewer papers have 

empirically examined the impact of employee behaviors on the performance of dedicated versus pooled 

queuing systems (Boudreau et al. 2003, Hopp et al. 2007, Jouini et al. 2008). Our work thus informs the 

debate over the benefit of a pooled queue, which enables flexibility in the routing of jobs to servers, and a 

dedicated queue, which enables improvement in wait and service times through better flow management. 

 

2. Prior Research and Hypotheses 

2.1. Prior Research on Queue Management and Service Times 

Operations scholars have investigated at least two different contexts in which pooling may occur: 

inventory waiting to be processed (production-inventory systems) and customers waiting for service 

(queuing networks). Most closely related to our research context, studies of queuing networks focus on 

the effect of pooling queues of customers, servers, and tasks in service organizations (Mandelbaum and 

Reiman 1998). Much of this research has been conducted with call centers, and has shown that the 

benefits of flexible servers and pooled queues can outweigh potential drawbacks (Anupindi et al. 2005, 

Bassamboo et al. 2010, Gans et al. 2003, Jouini et al. 2008). Researchers have reached similar 

conclusions in other settings, such as mail delivery, finding that pooling can improve quality while 

concurrently reducing costs (Ata and Van Mieghem 2008). Furthermore, prior research has found that 

pooling is beneficial and wait time reductions are achieved even when work is allocated fairly among 

servers using a RR routing policy (Hyytiä and Aalto 2013, Raz et al. 2006). In fact, Armony and Ward 

(2010) find that pooling with a fairness constraint outperforms classical pooling when the arrival rate of 

customers is high because faster servers have an incentive to slow their service rate under systems in 

which work is allocated based on server availability instead of a fair distribution across servers.  

On the other hand, some analytical models have shown that the behavioral responses of servers and 

customers can reduce the expected benefits of queue pooling (van Dijk and van der Sluis 2008, Hopp et 

al. 2007, Loch 1998, Mandelbaum and Reiman 1998, Rothkopf and Rech 1987). Most pertinent to our 

study, strategic servers may reduce the effectiveness of queue pooling (Cachon and Zhang 2007, Debo et 

al. 2008, Hopp et al. 2007, 2009, Jouini et al. 2008). First, they may manipulate customer service times to 

be higher or lower by managing their tasks differently when it benefits them to do so (Hopp et al. 2007, 

Link and Naveh 2006, Tan and Netessine 2013). For example, in the restaurant industry, Tan and 

Netessine (2013) find that wait staff adjust the services offered to customers so that customers spend less 

time in the restaurant when workload is high. Similarly, Oliva and Sterman (2001) find that bank 

employees reduce the steps they go through to approve loans when workload is high, even though this 
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erodes bank profitability. Second, strategic servers can also slow down their work pace. Using analytical 

models, Debo and colleagues (2008) show that when workers are paid by the quantity of work completed, 

such as taxicab drivers and lawyers, they add unnecessary tasks when business is slow, thereby increasing 

service time for their customers. Similarly, Hasija and colleagues (2010) find that call center agents take 

more time to answer customers’ queries when they have low workloads if their contract rewards them for 

keeping utilization above a minimum threshold. Collectively, these studies suggest that service time is 

impacted by strategic servers’ responses to incentives and responsibilities.  

Even when strategic servers do not have direct financial incentives to adjust their service rates, they 

may still manipulate their service times if they have a high degree of perceived ownership over their 

assigned jobs. Employees feel higher levels of ownership when they are given the resources and 

responsibility to manage the complete workflow of a meaningful task (Hackman and Oldham 1976). By 

design, dedicated queuing systems with a fairness constraint afford higher levels of ownership than do 

pooled queuing systems with the same fairness constraint because in the former, each server has been 

explicitly assigned the responsibility for efficiently completing the work waiting in his or her queue. In 

contrast, pooled queuing systems provide lower levels of ownership because the responsibility for 

depleting the queue is dispersed over multiple servers. Thus, strategic servers in dedicated queuing 

systems with a fairness constraint may be more motivated to efficiently manage their workload than those 

in pooled queuing systems with a fairness constraint (Doroudi et al. 2011, Gilbert and Weng 1998).  

2.2. Queue Management and Strategic Physician Behavior in the Emergency Department 

ED physicians are strategic servers, as defined by Cachon and Zhang (2007). To illustrate how physicians 

operate as strategic servers, consider an ED physician who has a patient with a headache. The physician 

can treat the patient using any combination of the following tasks: obtain a detailed medical history to 

generate possible causes of the headache, order a computed tomography scan, or prescribe an aspirin. The 

physician’s choice can impact the patient’s LOS because of variance in the time required for the different 

options. In addition, the physician can influence patient LOS by proactively pulling for information, such 

as x-ray results, rather than waiting for that information to be pushed. The physician can also control his 

or her own utilization because there are usually multiple patients under the care of an ED physician. Thus, 

physicians can reduce their own idle times and further increase the flow of patients through the system.  

In this paper, we consider two different types of queuing systems in the context of an ED. In a pooled 

queuing system—which is typical for most EDs in the United States—a physician is assigned to a patient 

only once the patient is placed in an ED bed. This means patients in the waiting room remain in a pooled 

queue while waiting for an open bed. In a dedicated queuing system, physicians are assigned to patients at 

the point of triage. Here, patients in the waiting room are, in effect, waiting to be seen by a specific 

physician. In the dedicated queuing system, each physician thus has greater ownership over his or her 
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workload even before the patient is placed in an ED bed.  

In the ED that we study, each physician in the dedicated system also controls his or her own bank of 

resources (e.g., beds and nurses) necessary to facilitate the flow of his or her own patients. Physicians are 

assigned patients in a RR fashion that fairly allocates patients among all physicians independent of 

physicians’ service rates. In addition, they can only go home when all of their assigned patients are 

discharged or nearly discharged (e.g., awaiting a test result), and are not paid extra for working past the 

scheduled end of their shift. Therefore, physicians have an incentive and the ability to manage their 

workload as efficiently as possible. For example, physicians can coordinate the care of their patients with 

their nurses to prioritize getting test results back for a patient so he can be discharged, and then quickly 

move a patient from the waiting room into that vacated bed. In contrast, in the pooled queuing system, 

physicians do not “own” patients in the waiting room, nurses and beds are shared among all physicians, 

and they rely on a triage nurse, called the “internal triage” nurse, to manage the flow of patients into 

available beds for the entire ED. Thus, in the pooled queuing system, physicians’ have ownership over a 

much smaller portion of the patient flow process. Based on our interviews with physicians and 

observations of their practice patterns, we suspect that the higher level of ownership of one’s workload 

and the resources necessary to manage that workload afforded by the dedicated queuing system increases 

physicians’ perceived ownership over patient flow, which results in physicians having a faster rate of 

discharging patients throughout their entire shift than when in the pooled system. 

Prior theoretical operations management research suggests that when strategic servers have ownership 

and responsibility for managing flow, it can lead to lower service times. Gilbert and Weng (1998) and 

Cachon and Zhang (2007) construct analytical models of a buyer’s choice of queue structure for 

allocating demand among two suppliers. They find that suppliers in a dedicated system produce the goods 

faster than those in a pooled system because the dedicated system’s suppliers have more incentive to 

invest in production capacity. The dedicated system provides certainty that they will benefit from their 

capacity investments, which can be thought of as having ownership over a demand stream in combination 

with the responsibility over production resources needed to meet that demand. Similarly, in the context of 

a hospital’s inpatient department, Best and colleagues (2012) use a stylized model to show that a patient 

flow director with increased ownership and responsibility for managing flow is able to attain a significant 

decrease in patient LOS. The authors suggest that this decrease is attained from increased motivation to 

cut non-value-added time and better coordinate patient care among doctors, nurses, and case managers.  

In the context of an ED, switching from a pooled to a dedicated queuing system should similarly 

affect the behavior of physicians by increasing the degree of ownership physicians have over their 

patients’ flow through the ED. Specifically, we hypothesize that ED physicians may attain a shorter 

average LOS for their patients when they work in an ED with a dedicated queuing system with a fairness 
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constraint. Prior research suggests that servers work slower at low workloads because there is no need to 

work fast due to the slack capacity (Tan and Netessine 2013). However, in our ED setting, workloads are 

typically at high levels due the ED’s ability to staff according to historical demand and to send clinicians 

home early during periods of unexpectedly low demand. Therefore, we hypothesize a direct, positive 

effect of a dedicated queuing system on LOS.  

Hypothesis 1: LOS is shorter in the ED when physicians are working in a dedicated queuing 
system as opposed to a pooled queuing system.  

We further consider how dedicated queuing systems may affect patients’ average wait times. A priori, 

it is unclear whether dedicated queues with strategic servers will result in shorter or longer wait times for 

customers. On the one hand, when under a dedicated queuing system, if patients currently being cared for 

spend less time in an ED bed and if a physician proactively places the next patient from his or her queue 

into the newly available bed, the next patient’s wait time may decrease due to an indirect queuing effect. 

In other words, the benefits of a dedicated queue—fair assignment of work and ownership over patients, 

resources, and patient flow—may overcome the negative impact on wait time of using a dedicated rather 

than a pooled queue. Thus, we predict: 

Hypothesis 2a: Wait time is shorter in the ED when physicians are working in a dedicated 
queuing system as opposed to a pooled queuing system. 

On the other hand, switching from a pooled to a dedicated queue may result in an increase in wait 

time, due to the well-known inefficiency of forcing customers’ whose server is busy to wait for that server 

to be free, even if another server is idle (Eppen 1979, Kleinrock 1976). The inefficiency of dedicated 

queues might overpower the possible reduction in wait times due to faster service times. Therefore, we 

test the following competing hypothesis. 

Hypothesis 2b: Wait time is longer in the ED when physicians are working in a dedicated 
queuing system as opposed to a pooled queuing system.  

To understand the behavioral mechanism through which different queuing systems may impact LOS, 

we explore the rates at which physicians discharge patients during different time periods throughout their 

shifts. We hypothesize that the higher level of ownership over patient flow afforded by a dedicated 

queuing system, as opposed to a pooled queuing system, motivates physicians to more efficiently manage 

patient flow throughout the duration of the entire shift. Physicians in the dedicated system may be able to 

efficiently manage patient flow—and thus achieve higher discharge rates—by proactively “pulling” for 

lab, x-ray, and consult results; improving coordination with nurses to prioritize tasks necessary for 

discharge; initiating the discharge process sooner for patients ready for discharge; and making sure that 

nurses place waiting patients into available beds as soon as possible. This hypothesized increase in 

discharge rate is in contrast to only speeding up towards the end of the shift, which would be predicted if 

physicians were only subject to a deadline effect and not better managing patient flow (Deo et al. 2014). 
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Prior theoretical research suggests that physicians in the dedicated system will have a greater 

incentive to consistently work at a higher rate because they can reap the benefits that stem from achieving 

a faster rate of production (Gilbert and Weng 1998). In our setting, the benefits to physicians of obtaining 

a higher discharge rate are (a) more time to spend with current patients, which increases both patient and 

physician satisfaction (Hopp et al. 2007); (b) idle time if the physician has no additional patients currently 

in queue (Armony and Ward 2010); and (c) less work remaining for the physician to complete before he 

or she can go home. In a pooled queuing system, these benefits do not necessarily accrue to physicians 

who work at a higher rate because the misalignment of responsibility for patient flow and ownership over 

patients and resources prevents physicians from being able to reap these benefits. Thus, we hypothesize 

that physicians working in a dedicated queuing system will attain higher rates of discharging patients 

throughout the shift. Importantly, we hypothesize that this increase in discharge rate will emerge a few 

hours after the beginning of a shift because the average LOS is greater than two hours and, therefore, it 

would not be possible to discharge many patients in the first two hours of one’s shift. However, after this 

initial two-hour period, the faster discharge rate will be present throughout the remainder of the shift, 

rather than only at the end of the shift.  

Hypothesis 3: A physician’s discharge rate of patients is greater for each non-initial time period 
of the shift when physicians are working in a dedicated queuing system as opposed to a pooled 
queuing system.  
 

3. Setting, Data, and Empirical Methods 

3.1. Research Setting 

Our data come from the ED of a 162-bed hospital in northern California. We select this ED for study 

because in August 2008, it experienced an intervention—which we describe in more detail below—that 

transformed a part of the ED from having a pooled queuing system to a dedicated queuing system for the 

patients waiting to be seen in the ED. We use data from a time span before and after the intervention 

(March 2007 to July 2010) to test our hypotheses about the impact of queuing systems on average LOS, 

wait time, and discharge rate in the ED.  

Depending on the time of day, this ED had an average of two to five physicians staffing 41 ED beds 

and up to nine hallway gurneys. One bed was located in the resuscitation room and reserved for patients 

arriving without a pulse, three beds were in the trauma bay reserved for trauma intakes, four beds were in 

the Rapid Care Area (RCA) for low severity patients, and a minimum of two beds were reserved for 

psychiatric patients. This ED experienced an average five percent increase in patient volume each year, 

from approximately 65,000 patients in 2007 to 76,000 patients in 2010. The average daily patient volume 

was 178 patients in 2007 and 212 patients in 2010. This was a relatively large patient volume in 

comparison to other EDs in the surrounding areas. 
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This ED, like many others, had a standardized patient flow process (Figure 1). Upon a patient’s 

arrival, a registration clerk conducted a brief registration process. A second triage nurse, called the 

“external triage” nurse, obtained vital signs, collected the chief complaint, and assigned an Emergency 

Severity Index (ESI) triage category—a commonly used, standard ranking of ED patient severity that 

ranges from levels 1 (highest acuteness) through 5 (lowest acuteness). This triage process accounted for a 

patient’s expected level and type of resource utilization, and was used to route a patient to either the main 

area (main ED) or the RCA. The two areas of the ED each had its own equipment and staff to deliver care 

to patients (e.g., the RCA had its own computer terminals and vital sign monitors that were separate from 

the main ED’s equipment). Ninety-eight percent of higher acuteness patients (ESI levels 1, 2, or 3) were 

treated in the main ED. Seventy-five percent of lower acuteness patients (ESI levels 4 or 5) were treated 

in the RCA. Lower acuteness patients were treated in the main ED when main ED beds were available 

and the waiting room census was low (15 percent of lower acuteness patients) or when they arrived 

between 11pm and 7am when the RCA was closed (nine percent of lower acuteness patients).  

----------------------- Insert Figure 1 About Here ----------------------- 

In this ED, a computer system assigned each patient to a specific attending physician, either upon 

assignment to a bed (pooled queuing system) or at the point of triage (dedicated queuing system). The 

assigned physician assumed responsibility for completing the set of physician-related tasks for that patient 

during the patient’s ED visit, such as taking the patient’s history, prescribing medications, and ordering 

tests or treatments. This physician could consult other physicians concerning his or her patient’s care, but 

this did not transfer the responsibility for patient care to the consulting physician. It was common for a 

physician to serve multiple patients simultaneously. In other words, a physician did not need to discharge 

one patient before starting work for the next patient.  

Physicians arrived at staggered times throughout the day, such that there was not a certain time at 

which all physicians changed shifts (Figure 2). Physician shift times were determined in advance by the 

ED chief, and the ED scheduler assigned individual physicians to each of the pre-determined shift times. 

Physicians could change shifts on the hour between 5am and 11am, between 2pm and 5pm, and at 11pm 

or midnight. Between 7am and 11pm, there was usually one physician working in the RCA and four 

physicians working in the main ED. During the overnight shift from 11pm to 7am, there were a minimum 

of two physicians and a maximum of four physicians working in the main ED.  

----------------------- Insert Figure 2 About Here ----------------------- 

Physicians were assigned to either the RCA or the main ED for the full duration of a shift by the ED 

scheduler. They were paid a flat rate for their shift without any additional compensation for the services 

provided or the number of hours worked. Thus, there were no incentives to stretch out treatment times by 

providing additional services. Prior to leaving the shift, physicians were expected to discharge or at least 
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complete a care plan for the cohort of patients assigned to them (e.g., indicate what next steps should be 

taken if the lab test comes back positive versus negative), which incentivized physicians to get their 

patients through the system as efficiently as possible. Physicians were not required to stay if they had 

patients who were simply boarding in the ED, waiting to be transferred to an inpatient unit or to another 

facility. To allow physicians enough time to either complete a care plan or discharge the patients who had 

been assigned to them, they were assigned new patients only up until two hours before the scheduled end 

of their shifts. Patients arriving during the last two hours of a physician’s shift were assigned to one of the 

other physicians on shift or, if it was close enough in time, to the oncoming physician. Because physician 

shifts were sufficiently staggered, there was always a physician available to take newly arriving patients 

and this did not induce greater variation in system productivity.  

3.2. Intervention: Change in the Patient Assignment System 

In August 2008, the main ED implemented an intervention called the Patient Assignment System (PAS). 

PAS restructured the main ED from having a pooled queuing system to a dedicated queuing system. Prior 

to PAS, higher severity patients due to be seen in the main ED returned to the waiting room after being 

triaged, with the exception of ESI level 1 patients who proceeded directly to the resuscitation room. When 

a bed became available in the main ED, the internal triage nurse placed the next patient of highest severity 

in this bed. Our interviews with ED physicians revealed that this process often resulted in a delay from 

the bed becoming available to a patient being placed in the bed because the internal triage nurse was not 

responsible for patient flow through the ED, and the physicians did not feel responsible for making sure 

that empty beds were filled quickly. Once a patient was placed in a bed, the computer system assigned 

each patient to a physician using a RR routing policy, which means that each patient was assigned to a 

physician in a set order that evenly distributed patients among physicians regardless of each physician’s 

current workload. Once this assignment occurred, the physician could see the assigned patient listed under 

his or her panel when logged onto the patient management system on one of the ED computers. Thus, 

when a patient was waiting in the waiting room, he or she was in a pooled queue waiting to be assigned to 

any one of the, on average, four physicians on shift in the main ED. Prior to the PAS intervention, the 

patient only entered a specific physician’s queue after being placed in an available main ED bed by the 

internal triage nurse. It was at this point that the physician had ownership of the patient, not before. The 

only exception to the RR routing policy was made when a physician was currently involved in the 

resuscitation of an ESI level 1 patient, in which case another physician could voluntarily take on that 

physician’s next patient. In addition, at the beginning of a physician’s shift, the computer system assigned 

one, two, or three consecutive patients to the oncoming physician. The specific number of consecutive 

patients to whom a physician was assigned was automatically determined by the computer system based 

on the rate of patient arrivals. This RR routing policy was instituted to prevent physicians from unfairly 
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selecting “easier” patients and to ensure that the faster physicians would not be unequally assigned more 

work simply because of their higher service rates. This simultaneously made patient routing to physicians 

both fair and nearly random rather than due to a physician’s seniority or speed of discharging patients. It 

was feasible to implement because there were two organizational structures in place to minimize the 

variation in workload across the physicians staffing the main ED: (a) the hospital’s trauma team assumed 

primary responsibility for incoming trauma patients and thus did not disproportionately increase the 

workload of an ED physician; (b) the RCA cared for lower severity patients. Thus, there was limited 

variation in patient intensity among the patients being assigned to the physicians staffing the main ED. 

After PAS implementation, the computer system still used the RR routing policy but assigned each 

patient to a physician at the point of triage. This means that, when a physician logged onto the patient 

management system to view his or her panel of patients, the display showed not only those patients who 

were already placed in ED beds, but also those who were still in the waiting room. This increased 

physicians’ perceived ownership of their patients because they were responsible for their patients’ care 

and experience from triage onward—which included their time in the waiting room—rather than just from 

placement in an ED bed. In conjunction, it was now the physicians’ responsibility to make sure their next 

patient from the waiting room was placed in an available main ED bed. To enable physicians to carry out 

this additional responsibility, six main ED beds and two hallway gurneys were allocated to each physician 

working in the main ED. In addition, two nurses were assigned to each physician to help care for patients, 

although each physician typically worked with other nurses outside of these two nurses during the course 

of the shift because (a) nurses’ shift change times were not aligned with that of the physician and (b) 

nurses had designated break times during which a relief nurse substituted in for the duration of the break.  

After PAS implementation, the computer system’s RR routing policy was maintained and adhered to, 

even if there was a physician who had waiting patients while another physician had an available ED bed 

and no waiting patients. Hence, patient assignment remained independent of a physician’s speed of 

discharging patients. Similarly, the incentive of having to stay until all patients had been cared for 

remained constant, though now physicians also had to care for the patients who had been assigned to them 

who were still in the waiting room.  

In the RCA, the process used to assign patients to the physician working in the RCA did not change 

over the course of our study. A lower severity patient was assigned to a physician when he or she was 

called to be seen in the examination room, not while in the waiting room. Thus, the RCA physician was 

not responsible for any patient who was still waiting in the waiting room at the conclusion of his or her 

shift; any patient still waiting became the responsibility of the next physician coming on to the shift.  

3.3. Data 

This study uses approximately 3.5 years of de-identified electronic medical record (EMR) data of all 
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238,946 patients treated in the ED from March 1, 2007 to July 31, 2010. The dataset contains patient-

level information including, but not limited to, the following: the patient’s time of arrival and departure, 

LOS, ESI level, attending physician, and disposition. We exclude patients with no attending physician or 

ESI level listed on their record, patients who left without being seen by a physician, patients who had a 

LOS of zero minutes or less, patients whose records lacked a time stamp for when the physician began 

caring for the patient, and patients who were admitted to the hospital but whose records lacked a time 

stamp for when a bed request was made. In addition, we exclude patients whose LOS was greater than 48 

hours; most of these patients presented with a psychological condition and were waiting to be discharged 

to an appropriate facility. We exclude these observations from our dataset because their extended LOS 

was typically driven by placement logistics rather than by physicians’ levels of productivity. In addition, 

we exclude patients of ESI level 1 (i.e., patients needing resuscitation) and patients who died in the ED 

because their LOSs were likely to be driven by factors other than physician productivity. Lastly, we 

exclude trauma patients because the hospital’s trauma team, not a particular ED physician, primarily 

cared for these patients. Altogether, we exclude 12,817 patients or 5.4 percent of the overall sample.  

Using this sample of 226,129 patients, we create a patient-level panel dataset that treats the physician 

as the panel variable. For our analyses, we exclude data from August 2008 to account for an acclimation 

period because the exact date of PAS implementation is unknown. In addition, we limit our sample to the 

patients seen by physicians who were full-time employees of this ED. Physicians who worked in this ED 

but were not full-time employees tended to be employees of other hospitals in the hospital’s network who 

were brought in to cover small portions of shifts when the full-time ED physicians were not able to staff 

the ED (e.g., during physician staff meetings). This results in a final sample of 217,213 patients. 

In addition to the EMR data, we also gathered qualitative data through 86 hours of observations of 

ED staff and unstructured interviews about workflow in the ED with ED physicians, nursing staff, and the 

ED unit leadership.  

3.4. Dependent Variables 

Our key dependent variables are ED wait time, ED LOS, and patient discharge rate. ED wait time is 

defined as the time from a patient’s arrival to the ED to the time the physician began delivering care. ED 

LOS starts with the time the physician began delivering care to the patient and—for patients admitted to 

the hospital—ends with a bed request for admission to the hospital, thus excluding the time spent 

boarding in the ED and any time spent in an inpatient unit. For patients discharged to home or to an 

outside facility, ED LOS ends at the time of discharge. We log-transform ED wait time and LOS because 

each of their distributions are otherwise right-skewed. Patient discharge rate is defined as the number of 

patients discharged per hour by a given physician in a given two-hour period of the shift, such as the first 

two hours, second two hours, or final two hours.  
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We employ a set of additional dependent variables for analyses that extend the main findings and 

consider possible alternate explanations. These include binary indicators for whether a lab was ordered, 

whether an x-ray was ordered, whether a patient was admitted to the hospital, whether a patient died in 

the ED, and whether a patient returned to the ED within 72 hours.  

3.5. Independent and Control Variables 

 3.5.1. Patient assignment intervention in main ED. The implementation of PAS marks the time at 

which the main ED transitioned from having a pooled queuing system to a dedicated queuing system. We 

capture this transition with a binary interaction term, PAS × main, which is equal to 1 in the main ED after 

the implementation of PAS and 0 otherwise (i.e., in the main ED before the implementation of PAS, or in 

the RCA at any time). To account for an acclimation period, we designate the pre-PAS period to include 

up to July 31, 2008 and the post-PAS period to begin with September 1, 2008. 

 3.5.2. Control variables. We account for several factors that may affect our dependent variables and 

may be correlated with our independent variables, PAS and main. These include factors related to the 

patient’s condition, the state of the ED, the physician’s practice experience, and time trends. To account 

for the variation in LOS due to the severity of a patient’s condition, we control for the patient’s acuteness 

and age. We account for patient acuteness using a series of dummy variables that reflect ESI levels 2, 3, 

4, and 5, respectively. The combination of a patient’s ESI level and age is the best approximation we have 

for patient condition and severity because our dataset does not include patients’ specific diagnoses (e.g., 

diagnosis-related groups (DRGs)). It is important to control for patient acuteness because the patient mix 

in this ED changed over time, wherein more patients presenting to the main ED were of higher acuteness 

and more patients presenting to the RCA were of lower acuteness after PAS implementation.  

To capture ED busyness and congestion, we control for the total number of physicians working 

during a given AM, PM, or overnight shift; the number of patients waiting to be seen by this physician at 

a given time; the number of patients being seen by this physician at a given time; whether an ESI level 1 

patient was present in the ED; and whether a trauma patient was present in the ED. Relatedly, to account 

for other systematic differences in patients’ LOSs that would arise from differences in structural elements 

of the ED, we control for the general time frame of the physician’s shift (AM, PM, or overnight) and the 

location of the shift (main ED or RCA).  

To account for systematic differences arising from differences in physicians’ experience working in 

this particular ED, we control for the number of shifts the physician has worked in this ED since the 

beginning of the dataset up until the point of each patient encounter. As we explain in more detail below, 

we also include physician fixed effects to account for other unobserved differences by physician.  

Lastly, we account for time trends and related influences by including dummy variables for day of the 

week and using month-year fixed effects.  
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3.6. Empirical Models 

Our main analyses use a difference-in-differences framework to examine the relative changes in LOS and 

wait time for patients seen in the main ED and the RCA before and after PAS implementation. We use 

linear regression models with month-year and physician fixed effects and clustered standard errors. We 

cluster standard errors by physician to account for within-physician correlations of the error terms, both 

within and across shifts, rather than imposing the usual assumption that all error terms are independently 

and identically distributed. The fixed effects models allow us to capture time trends and to control for 

unobservable individual physician effects that do not vary over time, such as level of motivation, innate 

ability, and practice routines. These are important to account for because they may significantly influence 

a physician’s productivity level in ways that cannot be measured (McCarthy et al. 2012).  

In addition to the standard assumptions of linear regression models, fixed effects models make two 

key assumptions, both of which are satisfied in our study. First is the assumption of strict exogeneity, 

which means the observation-specific error term is uncorrelated with the covariates of the observation and 

all other observations belonging to the same cluster (Wooldridge 2010). This is a plausible assumption in 

our context because (a) there is a low likelihood that patients with multiple visits are treated by the same 

physician and (b) the patient error term is unlikely to be correlated with the covariates for other patients of 

the same physician. In addition, the unobservable random traits of physicians that affect their patients’ 

average LOS are not likely to be associated with the key independent variable of interest. Specifically, the 

RR routing policy makes it unlikely that the fastest physicians receive the most complicated cases since 

patient assignment to physicians is random and is not driven by physician speed or physician preference.  

We use fixed effects models rather than random effects models because we do not believe that the 

random effects assumption of zero correlation between the month-year effect or physician effect and the 

other covariates (such as the number of shifts worked by the physician) holds. By using fixed effects 

models, we can account for the unobserved traits of each month-year and of each physician that are 

associated with a patient’s LOS and also correlated with the independent variables of interest. 

Accordingly, we conduct the Durbin-Wu-Hausman test, which rejects the random effects model in favor 

of the fixed effects model (χ2 > 169.45, p < 0.001). 

3.6.1. ED LOS. To test Hypothesis 1, we estimate the following difference-in-differences model at 

the patient level:  

 lnLOSijt =α 0 +α1mainij +α 2PASt ×mainij +δXijt +θt + γMDi + ε ijt   (i) 
Here, lnLOSijt represents the logged number of minutes that patient i of physician j stayed in the ED in 

month-year t; mainij indicates whether patient i of physician j was seen in the main ED; PASt × mainij is 

an interaction term equal to 1 when the patient was seen in the main ED after the implementation of PAS; 

Xijt is a vector of patient, physician, and day-of-week covariates; θt is a vector of month-year fixed 
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effects, MDi is a vector of physician indicators; α’s and δ’s represent vectors of coefficients; γ represents 

a vector of physician fixed effects; and ε is the time-varying error term not already captured. Table 1 

provides summary definitions for all variables included in our models.  

----------------------- Insert Table 1 About Here ----------------------- 

In estimating model (i), we use the difference-in-differences estimator, PASt × mainij, to compare the 

difference in patients’ average LOS in the main ED and the RCA before PAS implementation to the 

difference after PAS implementation. Because the queue structure did not change in the RCA, whereas 

the main ED moved from having a pooled to a dedicated queuing system, we consider the shifts worked 

in the RCA as comprising the untreated comparison group and those worked in the main ED as 

comprising the treatment group. By using a difference-in-differences approach, we are able to control for 

any bias caused by variables common to the main ED and the RCA, even when those variables are 

unobserved. Although the acuteness of patients seen in the two parts of the ED differed, thus implying 

differences in treatment processes and levels of patient LOS, the RCA serves as a reasonable control 

because, as our interviews with ED leadership and staff indicate, there were no changes besides PAS 

during the study period that affected only one part of the ED and not the other. Furthermore, we find that 

average LOS in the main ED and the RCA, respectively, exhibit parallel trends in the 17 months 

preceding the implementation of PAS. 

After establishing the parallel trend assumption (Abadie 2005, Duflo 2001), we estimate the effect of 

transitioning from a pooled to a dedicated queuing system on patients’ average LOS by examining the 

coefficient on the interaction term, PASt × mainij. We predict that this coefficient, α2, is negative and 

statistically significant, suggesting that the dedicated queuing system is associated with a shorter average 

LOS than the pooled queuing system.  

3.6.2. ED Wait Time. To test Hypotheses 2a and 2b, we estimate the following difference-in-

differences model at the patient level:  

 lnwaitijt = β0 + β1mainij + β2PASt ×mainij +δXijt +θt + γMDi + ε ijt   (ii) 
In this model, all variables remain the same as in model (i) with the exception of lnwaitijt, which 

represents the logged number of minutes that patient i of physician j in month-year t spent in the waiting 

room upon arrival to the ED. We use the same difference-in-differences approach as we do in testing 

Hypothesis 1. Here, we estimate the effect of PAS on patients’ average ED wait time by examining the 

coefficient on the difference-in-differences estimator, PASt × mainij. Hypothesis 2a predicts that this 

coefficient, β2, is negative and statistically significant due to an indirect queuing effect, suggesting that 

the dedicated queuing system is associated with a shorter average wait time than the pooled queuing 

system. Hypothesis 2b predicts that β2 is positive and statistically significant due to the inefficiency of 

dedicated queues, suggesting that the dedicated queuing system is associated with a longer average wait 
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time than the pooled queuing system. 

3.6.3. Discharge Rate. To test Hypothesis 3, we estimate the following model at the physician-shift 

two-hour period level: 

 log dischratekj( ) =ϕ0 +ϕ1PAS +δXkj + γMDk + ε kj   (iii) 
Here, dischratekj represents the number of patients discharged per hour by physician j in a given two-hour 

shift period k; PAS indicates whether PAS had been implemented; ϕ’s and δ’s represent vectors of 

coefficients; and all other variables remain the same. For this analysis, we limit the sample to patients 

seen in the main ED and conduct a pre-post analysis. We do not employ a difference-in-differences 

approach because the different discharge processes in the main ED and the RCA make the comparison 

difficult, and because we are interested in the change in discharge rates during each of the two-hour 

periods over the course of a physician’s shift rather than the change in the average discharge rate of a 

physician’s shift. Therefore, we estimate model (iii) separately for the first, second, penultimate, and final 

two-hour periods of a physician’s shift. This allows us to examine whether and at what point during a 

physician’s shift the implementation of PAS in the main ED affects the discharge rate of patients. 

Because the discharge rate is small and discrete and because the data are not over-dispersed, we employ a 

Poisson model with physician fixed effects.  

If the dedicated queuing system results in a reduction in patients’ average LOS, we would expect the 

discharge rate in each of the two-hour periods of a physician’s main ED shift to increase after PAS 

implementation. This is because, after PAS implementation, physicians are more likely to engage in 

strategic behaviors throughout the shift to ensure that their patients’ average LOS is as short as possible. 

However, because many of the preliminary tasks may be unaffected by the post-PAS increase in 

ownership, we expect that the discharge rate may be unaffected in the first two-hour period of a 

physician’s shift. Accordingly, we predict that the coefficient on PAS will be positive and statistically 

significant for each of the second, penultimate, and final two-hour periods of a physician’s shift, while it 

will not exhibit a statistically significant change for the first two-hour period of a shift.  

3.6.4. Additional analyses. To better understand our main findings and consider possible alternate 

explanations, we conduct several additional analyses. We begin by considering two competing 

explanations that could account for the decrease in average LOS post-PAS. First, patients might have 

experienced shorter LOSs in the ED because physicians “cut corners” by stinting on care (Oliva and 

Sterman 2001). We assess this possibility by estimating model (i) with two different dependent variables, 

both measured at the patient level: whether labs are ordered for a patient and whether x-rays are ordered 

for a patient. Data on whether labs or x-rays are ordered for a patient are obtained directly from the 

hospital’s EMR system. For each of these variables, we estimate model (i) as a logistic regression because 

both are binary indicator variables. Second, we consider whether the decrease in LOS stems from 
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physicians shifting their work onto other clinicians. In the context of the ED, the most plausible scenario 

is ED physicians admitting more patients to the hospital, so that patients appear to stay in the ED for a 

shorter period of time. We examine this possibility by estimating model (i) with admission to the hospital 

as the dependent variable. Data for whether the patient is admitted to the hospital come from the EMR 

system and are measured at the patient level. Again, we estimate a logistic regression because admission 

to the hospital is a binary dependent variable. Next, we examine the possibility of the quality of care in 

the ED declining as an unintended consequence of PAS implementation in the main ED. As proxies for 

quality, we examine whether the patient returned to the ED within 72 hours after an initial visit and 

whether the patient died in the ED. We estimate model (i) as a logistic regression with each of these 

binary indicators as the dependent variable, respectively. For the analysis of ED revisits, we employ a 72-

hour time period, which is the standard quality metric used to capture returning ED patients (Keith et al. 

1989). For the analysis of patient mortality in the ED, we include a subset of previously excluded patient-

level observations—specifically patients of ESI level 1, patients who died in the ED, and trauma patients. 

In addition, we consider the potential impact of PAS on the duration of a physician’s shift, which is 

measured as the number of hours for which a physician worked in the ED during a particular shift. 

Though this does not directly address why having a dedicated queuing system may decrease patients’ 

average LOS, it is an important consideration if implementing a similar system at other EDs. If having a 

dedicated queuing system results in physicians staying longer to finish caring for their assigned patients, 

it may not be feasible to implement elsewhere for reasons of cost and physician burnout. To assess this 

possibility, we estimate a regression of a similar form as model (i) but with the shift duration as the 

dependent variable and at the physician-shift level. We use the shift duration and not the log of shift 

duration because the variable is normally distributed. We estimate this regression at the physician-shift 

level because the dependent variable (i.e., shift duration) is calculated at this level. If physicians are 

working longer hours as a result of PAS implementation, we would expect to see a positive and 

statistically significant coefficient on the interaction term, PAS × main.  

Finally, we examine the impact of PAS implementation on sojourn time, which is the sum of ED wait 

time and LOS. We also examine the impact of the queue structure on ED boarding time to assess whether 

the change results in an admitted patient waiting longer for an inpatient bed. We estimate model (i) with 

logged ED sojourn time and logged ED boarding time, respectively, as the dependent variable.  

 

4. Results 
4.1. Descriptive Statistics 

Table 2a presents means and standard deviations for all continuous variables included in the empirical 

models, stratified by location (main ED or RCA) and time period (pre-PAS or post-PAS). Table 2b 
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presents the correlations between all continuous variables included in the empirical models. Table 2c 

presents percentages for all categorical or binary variables in the empirical models stratified by location 

and time period. As shown in Table 2a, the average LOS for a patient seen in the main ED is 

approximately 3.5 hours, and it is about 50 minutes for a patient seen in the RCA. There are, on average, 

three or four physicians staffing the main ED during a given eight-hour period (i.e., AM shift, PM shift, 

overnight shift), and one physician staffing the RCA. None of the correlations between variables in the 

same regression model have levels close to or higher than 0.80, minimizing concerns about 

multicollinearity (see Table 2b). We also check for multicollinearity by calculating variance inflation 

factors (VIF). The largest VIF is 5.45 and the mean VIF is 2.52 (not shown), both of which fall well 

below the conventional threshold of 10, providing additional evidence that multicollinearity is not a 

concern (Wooldridge 2012). As Table 2c shows, nearly 75 percent of main ED patients are of ESI level 3, 

with the remainder being predominantly split between ESI levels 2 and 4. About 65 percent of main ED 

patients had a lab ordered compared to less than nine percent of RCA patients.  

----------------------- Insert Tables 2a, 2b, and 2c About Here ----------------------- 

As expected, patients’ average LOS differs significantly by their acuteness. Although we do not 

display the numbers in a table for brevity, we find that for patients of ESI levels 2 to 5, the relationship 

between LOS and ESI level is a generally monotonically increasing one, with patients of a higher 

acuteness having a longer LOS. We account for the non-linearity of this relationship by adjusting for 

patient acuteness using a dummy variable for each ESI level.  

4.2. Patient Assignment System Implementation in Main ED 

Both the qualitative and quantitative data suggest that PAS was implemented as described, though not 

without challenges. An ED physician remarked on one of the key challenges during implementation: 

“[PAS] was the hardest thing we have ever done. When we first started with the PAS system, it was a 

rocky road because sometimes there were patients in the waiting room when there was an open bed.” This 

comment, in combination with the first author’s observations of the ED workflow, suggests that 

physicians largely abided by PAS and the RR routing policy. In our EMR data, we find further support 

for the general adherence to the RR routing policy. In particular, patient demographics across physicians 

are well balanced and there is little variation in the average acuteness of patients assigned to each 

physician, suggesting it is not the case that certain physicians are being assigned particular types of 

patients. Furthermore, on average, there are only one or two ESI level 2 patients seen by a physician on a 

given main ED shift (mean = 1.4, s.d. = 0.5), suggesting the workload across physicians remains 

relatively balanced, thus allowing physicians to feasibly adhere to the RR routing policy.  

However, there are rare situations when the RR routing policy is violated. Although the internal triage 

nurse cannot bypass the patient assignment generated by the computer system, physicians working in the 
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main ED can bypass the RR assignment determined by the computer when another physician has an 

exceptionally time-consuming workload of ESI level 1 patients. One physician stated: “The expectation is 

that each physician sees the patients assigned to him or her. Ninety-nine percent of the time, this 

happens…[but] we help each other if someone gets slammed with a critical [ESI level 1] patient… I 

remember one case last year where a physician got three critical patients in a row. That is extremely rare. 

He did not ask anyone, but two of his colleagues came and took two of the three patients [onto their 

panels].” This corroborates our understanding of the RR routing policy, in which other physicians can 

voluntarily take on the next patient assigned to a physician caring for an ESI level 1 patient.  

4.3. Base Results 

4.3.1. ED LOS. We estimate model (i) to assess the impact of having a pooled queuing system 

(versus a dedicated queuing system) on patients’ average LOS in the main ED. Table 3 model (1) presents 

a fixed effects model that captures the effect of moving from a pooled to a dedicated queuing system. We 

find that the difference in patients’ average LOS between the main ED and the RCA is greater prior to 

PAS implementation. Once the main ED adopts a dedicated queuing system, this difference in patients’ 

average LOS is reduced. This difference-in-differences is captured by the coefficient on the interaction 

term, PAS × main (α2 = -0.17, p < 0.001), and indicates that the transition from a pooled queuing system 

to a dedicated queuing system is associated with a highly significant reduction in the difference between 

the average LOS in the main ED and the RCA. This 17 percent decrease in the difference in average LOS 

in the main ED and the RCA after the implementation of PAS corresponds to a 39-minute decrease in 

LOS in the main ED relative to the RCA for an average patient of ESI level 3 seen by an average 

physician in the main ED. In other words, the average patient’s LOS in the main ED when compared to 

that in the RCA is significantly longer in the pooled queuing system than in the dedicated queuing 

system. This result offers strong support for Hypothesis 1, which predicts that, in our setting, pooled 

queuing systems are associated with a longer average LOS compared to dedicated queuing systems. 

----------------------- Insert Table 3 About Here ----------------------- 

This finding is consistent with strategic changes in physicians’ behaviors to improve the management 

of their overall workflow. After PAS implementation, physicians change their practice behaviors because 

(a) they are aware of their full set of assigned patients, even those still in the waiting room, and (b) they 

have ownership over a designated bank of beds and nurses. In addition, when one of their designated beds 

becomes available due to a patient discharge, physicians post-PAS are responsible for ensuring that their 

next patient from the waiting room is placed in that bed as quickly as possible. Specifically, according to 

interviews with physicians and observations of their practice patterns, physicians change their practice 

behaviors by (a) proactively “pulling” for lab results, x-ray results, and consult results rather than waiting 

for this information to be “pushed”; (b) jointly managing their own workflow with that of the nurses with 
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whom they are paired to better coordinate various tasks; (c) initiating the discharge process sooner for 

patients who are ready for discharge; and (d) making sure that patients are brought in from the waiting 

room as soon as one of their main ED beds becomes available rather than waiting for the internal triage 

nurse to place the next patient in an open bed. Collectively, these proactive actions lead to a shorter 

average LOS for patients in the main ED and result in a decrease in the difference in average LOS 

between the main ED and the RCA.  

To confirm that the implementation of PAS only affected the main ED and not the RCA, a necessary 

condition for using the difference-in-differences framework, we conduct two analyses. First, using a pre-

post analysis that is limited to the RCA, we examine whether there is a discontinuous jump in LOS in the 

RCA when PAS is implemented. We find no evidence of a significant increase or decrease in LOS in the 

RCA after PAS implementation (α2 = 0.01, p ≈ 0.84). Second, we check for a change in the slope of LOS 

trends in the RCA before and after PAS implementation. A Wald test on the equality of coefficients also 

suggests no change in the trend of LOS in the RCA after PAS implementation (p ≈ 0.71). Both of these 

findings indicate that the effects of PAS implementation were limited to the main ED and did not affect 

the RCA, thereby validating the use of the difference-in-differences model.  

4.3.2. ED Wait Time. We estimate model (ii) to examine the impact of having a pooled queuing 

system on patients’ average wait time in the main ED. The results are summarized in model (2) of Table 

3. We find that the difference in patients’ average wait time between the main ED and RCA decreases 

after PAS implementation (β2 = -0.09, p < 0.01). This nine percent decrease corresponds to a four-minute 

decrease in wait time in the main ED relative to the RCA for an average patient of ESI level 3 seen by an 

average physician in the main ED. In other words, the average patient’s wait time in the main ED when 

compared to that in the RCA is significantly longer in the pooled system than in the dedicated system. 

This offers strong support for Hypothesis 2a, which predicts that, in our setting, dedicated queuing 

systems are associated with a shorter average wait time compared to pooled queuing systems. We do not 

find support for Hypothesis 2b, which relies on traditional queuing theory to predict that a pooled queue 

yields a shorter average wait time than do dedicated queues. In the dedicated system, the shorter wait 

times may be attained because, instead of waiting for the internal triage nurse to initiate placing the next 

patient in an open bed, physicians operating under PAS are able to initiate placement of the next patient 

from their queue into their newly available bed. Our findings are also consistent with the expectation of 

an indirect queuing effect, where patients experience shorter wait times because the patients who are 

receiving care have a shorter average LOS, which in turn makes beds in the main ED available sooner.  

4.3.3. Discharge Rate. To better understand how dedicated queuing systems impact patients’ average 

LOS, we estimate model (iii). We examine whether, and at what point during a physician’s shift, the 

implementation of PAS affects the discharge rate of patients in the main ED.  
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----------------------- Insert Table 4 About Here ----------------------- 

Models (1) through (4) of Table 4 present fixed effects models estimated at the physician-shift two-

hour period level for each of the following four time periods: the first, second, penultimate, and final two-

hour periods of a physician’s shift. We find that in the second, penultimate, and final two-hour periods of 

a shift, the discharge rate in the main ED exhibits a significant increase after PAS implementation. 

Specifically, after PAS implementation, the discharge rate is 1.05 times greater (ϕ1 = 1.05, p < 0.05) in 

the second two hours, 1.07 times greater (ϕ1 = 1.07, p < 0.001) in the penultimate two hours, and 1.05 

times greater (ϕ1 = 1.05, p < 0.01) in the final two hours of a physician’s main ED shift. We also find that 

this increase in discharge rate does not manifest in the first two hours of a physician’s main ED shift (ϕ1 = 

1.04, p ≈ 0.12). Based on observations in the ED and the fact that the average LOS of a patient seen in the 

main ED is 211 minutes (i.e., approximately 3.5 hours), the lack of significant difference in discharge 

rates in the first two hours of a shift may be due to the fact that the baseline amount of time necessary for 

patient care in the main ED is greater than two hours and, therefore, it is difficult for physicians to have a 

faster discharge rate during the first two hours of a shift. 

Our findings are thus consistent with Hypothesis 3, which predicts that physicians in a dedicated 

queuing system exhibit a higher discharge rate that is sustained throughout the entire shift, which 

indicates that physicians are engaging in strategic behaviors over the entire course of the shift. This may 

be attributable to their greater ownership for patient flow and the resources needed to manage patient flow 

that comes with working in the ED’s dedicated queuing system.  

4.4. Consideration of Alternate Explanations and Unintended Consequences 

Though our finding of a reduction in the difference between main ED and RCA patients’ average LOS in 

a dedicated queuing system versus a pooled queuing system is consistent with an increase in physicians’ 

strategic behavior to more efficiently manage patient flow, we consider alternate explanations that could 

also be consistent with our finding. We also explore the possibility of unintended consequences arising 

when implementing a dedicated queuing system.  

4.4.1. Testing for changes in the provision of care. First, one possibility is that physicians stint on 

care after PAS implementation because of the increased pressure to care for all patients in their dedicated 

queues. If fewer services are provided to patients, they may stay in the ED for a shorter amount of time. 

For example, if a patient who would have otherwise received an x-ray does not, she would likely stay in 

the ED for a shorter duration because she would not need to wait for the x-ray machine to become 

available, have the x-ray taken, and wait for the radiologist to read the films. If physicians are stinting on 

care post-PAS, we would be mistaken to assume that the reduced LOS stems from an increase in 

physicians’ strategic behaviors to more efficiently manage patient flow. 

We do not find strong evidence of stinting on care after the transition to a dedicated queuing system 
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in the main ED. In model (1) of Table 5, we examine the change in a patient’s likelihood of having a lab 

test ordered. We find that the coefficient for PAS × main is not statistically significant (α2 = -0.08, p ≈ 

0.07), suggesting that the difference in the likelihood of having a lab test ordered for a patient in the main 

ED and the RCA does not change significantly after PAS. Similarly, in model (2) of Table 5, we do not 

find a statistically significant change in a patient’s likelihood of having an x-ray ordered (α2 = -0.03, p ≈ 

0.50). This suggests that there is no meaningful change in the difference in a patient’s likelihood of 

receiving an x-ray between the main ED and the RCA before and after the implementation of PAS. In 

combination, these results suggest that physicians are not systematically stinting on care in the main ED 

as compared to the RCA as a result of PAS implementation. 

----------------------- Insert Table 5 About Here ----------------------- 

4.4.2. Testing for changes in the likelihood of a patient’s admission to hospital. A second 

possibility is that ED physicians may be reducing patients’ average LOS in the ED by passing them off to 

other hospital departments earlier. If an ED physician decides to have a patient admitted to the inpatient 

unit for further evaluation, rather than taking the time to conduct further evaluation while the patient is 

still in the ED, the patient’s LOS in the ED may appear to be shorter than it would be otherwise.  

We do not find evidence of main ED patients exhibiting a higher likelihood of admission to the 

hospital, relative to RCA patients, after PAS. As shown in model (3) of Table 5, we find that the 

difference in a patient’s likelihood of being admitted to the hospital when in the main ED versus the RCA 

does not change significantly after PAS implementation (α2 = -0.19, p ≈ 0.16).  

4.4.3. Testing for changes in the quality of care. Next, we consider two potential unintended 

consequences of this transition from a pooled to a dedicated queuing system in the main ED. We assess 

whether patients are more likely to return to the ED within 72 hours of being seen, which could be an 

unintended consequence of physicians providing lower quality or insufficient care in order to decrease 

patient LOS. Similarly, if physicians are providing lower quality care such that more patients are dying in 

the ED, this truncating effect on LOS may result in a decrease in the average patient’s LOS in the ED.  

We do not find evidence of lower quality of care as measured by revisits to the ED within 72 hours. 

As is summarized in model (4) of Table 5, we find no statistically significant changes after PAS 

implementation in the difference in the likelihood of returning to the ED within 72 hours of an initial visit 

(α2 = 0.01, p ≈ 0.88). Even when using a more inclusive cutoff of 7 days (results not shown), we find no 

statistically significant changes in the difference in the likelihood of revisit (α2 = 0.07, p ≈ 0.11). 

In addition, we do not find evidence of lower quality of care as measured by mortality in the ED. 

These results are presented in model (5) of Table 5. Due to the lack of variation in the dependent variable 

among patients of ESI level 5 and patients seen in the RCA, these two categories of patients are omitted 

from the analysis. In the resulting analysis, comparing patient mortality in the main ED before and after 
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the implementation of PAS, we find that the likelihood of dying in the ED decreased after the transition to 

a dedicated queuing system (α2 = -0.67, p < 0.05). This suggests that the quality of care, as measured by 

patient mortality in the ED, improved after PAS was implemented, thereby reducing concerns that the 

assignment of patients in the waiting room to a specific physician might adversely affect patients. 

4.4.4. Testing for potential impact on the duration of a physician’s shift. Lastly, we consider the 

potential impact of PAS on the duration of a physician’s shift. As summarized in model (5) of Table 4, we 

find no statistically significant change in the difference between the duration of a shift in the main ED and 

the RCA before and after PAS implementation (α2 = -0.09, p ≈ 0.30). This suggests that physicians are 

not working longer hours in the main ED as a result of the intervention.  

4.5. Specification Tests 

To examine the robustness of our main findings about LOS, we test a variety of other specifications in 

addition to the reported models. Due to space constraints, models are not reported in tables.  

First, we use a limited model specification that includes only patient ESI levels as control variables. 

We retain patient ESI levels because the average acuteness of patients arriving in the main ED became 

higher over time while that of patients arriving in the RCA became lower over time. We find that the base 

result remains very robust to this limited model specification (α2 = -0.16, p < 0.001), with the magnitude 

of the effect decreasing only slightly from 17 percent to 16 percent.  

We then repeat our estimation of model (i) using non-logged LOS and bootstrapped standard errors. 

With this alternate model specification, we find that PAS implementation is associated with a 23-minute 

reduction in the difference in LOS between the main ED and the RCA (α2 = -22.73, p < 0.001). Even 

when not using a log-level specification to account for the heavily skewed nature of the dependent 

variable, we obtain results that are robust to our base findings.  

Although our interviews with ED staff suggest that there were no other interventions besides PAS 

that were applied to only the main ED or only the RCA during the study period (March 1, 2007 to July 

31, 2010), we apply our analyses to shorter time frames around PAS implementation to nullify the 

possibility of other effects. When we limit the time frame to three months, seven months, 12 months, 15 

months, and 18 months before and after the intervention, we find that our base results remain robust to 

these shorter time frames (α2 < -0.10, p < 0.001).  

Next, we repeat our analyses using logged ED sojourn time to test for the impact of PAS on a more 

holistic measure of patient experience. We find that PAS is associated with a 10 percent decrease in the 

difference between main ED and RCA sojourn times before and after PAS implementation (α2 = -0.10, p 

< 0.001). This suggests that when taking both wait time and LOS into account, PAS is associated with a 

reduction in the average time that patients spend in the ED. In addition, we examine the impact of PAS on 

logged ED boarding time, which is the amount of time that patients being admitted to the hospital spend 
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waiting for an inpatient bed. We find no statistically significant change in the difference in ED boarding 

times for patients in the main ED and the RCA before and after PAS implementation (α2 = -0.25, p ≈  

0.09). This is consistent with our expectation because ED boarding time is primarily determined by the 

inpatient unit’s capacity to admit a new patient rather than ED physicians’ productivity levels.  

Next, we limit our sample to those patients seen in the main ED and conduct a pre-post analysis, 

comparing the average LOS of patients before and after PAS. We find that our main findings are robust to 

this alternate specification that does not use a difference-in-differences approach, where PAS is associated 

with a five percent decrease in LOS in the main ED (α2 = -0.05, p < 0.01). 

In addition, our results do not appear to be driven by differences in patient care delivered in the two 

areas of the ED. To examine this, we assess whether the transition from a pooled system to a dedicated 

system differentially affects LOS depending on the location of a patient’s ED care. To conduct this 

analysis, we use the same empirical model as model (i), but limit the sample to patients of ESI levels 4 

and 5, and with each independent variable of interest interacted with ESI level 5. We limit the sample to 

these patients because they constitute the group of patients who are potentially seen in both areas of the 

ED (because all ESI level 4 and 5 patients are seen in the main ED after 11pm). This analysis suggests 

that there are no differential effects by the location of a patient’s ED care (p ≈ 0.32).  

Furthermore, we examine whether the base results are sensitive to heterogeneity in patient acuteness. 

In other words, we examine whether the transition from having a pooled queuing system to a dedicated 

queuing system has a greater impact on patients with a higher ESI level as opposed to those with a lower 

ESI level. Using a similar approach as above, we explore this possibility by limiting the sample to 

patients of ESI levels 2 and 3, and interacting each independent variable of interest with ESI level 3. For 

this analysis, we limit the sample to patients of these two ESI levels because they exhibit two different 

groups with relatively longer LOS (for ESI level 2, mean = 332 minutes, s.d. = 330 minutes) and shorter 

LOS (for ESI level 3, mean = 212 minutes, s.d. = 202 minutes). This analysis suggests that patients of 

higher acuteness (ESI level 2) are likely to experience a greater decrease in LOS after the implementation 

of PAS compared to patients of a relatively lower acuteness (ESI level 3) (α = 0.42, p < 0.01). While it is 

beyond the scope of this paper to examine why this heterogeneity arises, we speculate that it may be due 

to the prioritization of higher acuteness patients (ESI level 2) within each physician’s dedicated queue.  

We also repeat our analyses using several different exclusion criteria in constructing our sample and 

find that our results are robust in all of the following analyses. First, we include all observations that had 

previously been excluded as outliers (i.e., patients with a LOS greater than 48 hours). Then, to test our 

hypotheses on an even more homogeneous set of patients and ensure that our findings are not driven by 

outliers, we exclude observations with a LOS greater than one day (24 hours) and the average duration of 

one shift (9.4 hours), respectively. Next, we test our hypotheses on a sample that includes ESI level 1 



 26 

patients, which were previously excluded. Lastly, we test our hypotheses on a sample that excludes 

patients arriving by ambulance and patients presenting with a psychological condition, respectively, both 

of whom were previously included. All coefficients of interest and their corresponding significance levels 

remain robust to these alternate specifications (α2 < -0.13, p < 0.001).  

Lastly, we use hierarchical linear models, which specify random effects rather than fixed effects at the 

physician level. We conduct this analysis to test each of our hypotheses with greater efficiency gains. We 

use three levels for our multilevel analyses: patient, physician-shift, and physician. The effect of 

transitioning from having a pooled queuing system to a dedicated queuing system remains robust to this 

model specification (α2 = -0.18, p < 0.001).  

 

5. Discussion and Conclusions 
Using 3.5 years of data from a hospital’s ED, we find that patients experience shorter LOS when 

physicians work in a dedicated queuing system with a fairness constraint as opposed to a pooled queuing 

system with the same fairness constraint. Although we are unable to precisely test the mechanism for the 

shorter LOS in the dedicated system, we believe that the improved performance stems from strategic 

physician behaviors triggered by physicians’ greater ownership over patient flow and the resources 

needed to smooth flow through the ED. This suggests that the flow management benefits associated with 

a dedicated queuing system with a fairness constraint may outweigh the variability-buffering benefits of a 

pooled queuing system. We consider, but find no empirical support for, alternate explanations for this 

reduction in LOS, such as changes in the provision of care or lower quality care.  

We find evidence that physicians’ strategic behaviors persist throughout the entire shift. In particular, 

examination of physicians’ discharge rates in two-hour periods over the course of the shift shows that 

physicians exhibit a higher discharge rate when working in a dedicated queuing system as opposed to a 

pooled queuing system soon after beginning the shift. This increase in discharge rates is sustained 

throughout the remainder of the shift. In describing how the implementation of PAS increases physicians’ 

ability to manage patient flow, one physician said, “Before PAS, the physician had no control or 

responsibility over getting the next patient into an empty bed. I often had idle time and had more than 

enough time to see more patients; I just couldn’t get them to me from the waiting room. I wasn’t in 

control so I didn’t do much to get patient turnover to happen faster. Now, with PAS, I am responsible for 

getting my patients from the waiting room into my beds. I do this by making sure that tasks are being 

done so that I can discharge my current patients…. It changed the whole responsibility for patient flow 

from [the] one [internal triage] nurse onto me to manage my patients.”  

To quantify the impact of our findings, we calculate effect sizes. We find that moving from a pooled 
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queuing system to a dedicated queuing system is associated with a 17 percent decrease in the difference in 

LOS between the main ED and RCA. For an average patient of ESI level 3 seen in the main ED by an 

average physician, this corresponds to a 39-minute decrease in LOS in the main ED relative to the RCA. 

This is a particularly meaningful difference in the context of a hospital’s emergency room. With 

approximately 200 patients in the ED every day, this is roughly equivalent to an additional 130 patient-

hours per day that are saved with the dedicated queuing system. Once we take into account the large costs 

associated with emergency room care, it becomes clear that the time and cost implications are substantial. 

If these findings are generalizable to other EDs, this would have significant practical implications for EDs 

across the country faced with large increases in patient volume accompanied by constrained budgets. 

Nevertheless, it is important to consider the potential limitations of dedicated queuing systems. In 

systems with less homogenous patient populations, a dedicated queuing system with fairness constraints 

might result in imbalanced workloads among different care providers.   

5.1. Theoretical Contributions 

This paper contributes to the operations management literature on queue pooling in several ways. Our 

paper is one of a few to use empirical data to examine the effect of queue management systems on wait 

times and service times. We find that when servers have ownership over patient flow and key resources, 

dedicated queuing systems with a fairness constraint are associated with shorter wait times and service 

times than pooled systems with a fairness constraint. Our findings illustrate the importance of accounting 

for the interaction between human behavior and queuing system design when predicting performance 

(Boudreau et al. 2003, Jouini et al. 2008). When queuing theory does not account for strategic server 

behavior, it suggests that pooling queues should result in shorter wait times even when fair routing 

policies are used (Armony and Ward 2010). In our study, we find that wait times are longer for the pooled 

system. Thus, our paper provides empirical support for prior analytical models that predict that human 

behaviors can reduce the benefits of using a common pool (Best et al. 2012, Cachon and Zhang 2007, 

Gilbert and Weng 1998, Hopp et al. 2007, Jouini et al. 2008, Wang et al. 2010). We are also able to add 

quantitative, empirical evidence to the debate that the benefits that arise from lean manufacturing’s 

practice of assigning a specific person to service a specific stream of work outperforms the flexibility 

benefits from a pooled system (Spear and Bowen 1999). Our paper demonstrates how employees’ 

willingness and ability to manage flow create an advantage for dedicated systems over pooled systems.  

We speculate that queue pooling results in longer LOS because, in the pooled system, physicians do 

not feel completely responsible for patient flow because the internal triage nurse is responsible for 

moving patients from the waiting room to available beds. This result is similar to, but distinct from, 

Chan’s finding (2013) that ED physicians work slower when they are assigned patients by a triage nurse 

than when physicians—collectively as a group—assign patients to physicians. Chan asserts that this 
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“foot-dragging” behavior occurs in the nurse-managed system because physicians delay discharges to 

overstate their true workload to the nurse in hopes of avoiding being assigned another patient. The 

findings in Debo and colleagues’ (2008) study are also driven by servers’ misleading behaviors. Another 

mechanism in the literature that explains why dedicated queuing systems have faster service times than 

pooled systems is that managers can better supervise the smaller teams of workers that result from 

splitting up a large pooled system into a set of dedicated systems and a healthy competition emerges 

among the different dedicated systems (Jouini et al. 2008). 

In contrast, we propose a different underlying mechanism for the improvement in throughput times: 

better flow management arising from strategic physician behaviors. In our study, a computer-automated 

RR routing policy fairly assigns patients to physicians both before and after the intervention. Thus, unlike 

physicians in Chan’s study (2013), physicians in our study are not deliberately working slower to 

overstate their workloads. Furthermore, the fact that only a handful of physicians are working in this ED 

at any one time suggests that Jouini and colleagues’ (2008) emphasis on the challenge of managing a 

large pool of employees is not what is driving our results. Also, physicians were not given any 

information about other physicians’ average LOS, so competition is not the explanatory mechanism 

(Jouini et al. 2008). Instead, we propose that making a single physician—as opposed to a group of 

physicians—accountable for efficiently managing patient flow leads to a reduction in the wait time and 

LOS through better flow management practices. 

Our findings build on Schultz and colleagues’ (1998) study of the motivational impact of low 

inventory levels on production line workers’ speeds. Schultz and colleagues (1998) find that low 

inventory motivates slower workers to speed up, enough to cancel the productivity loss due to the 

blocking and starving that occurs in low inventory production lines. We examine a different lever to 

increase workers’ motivation: the queue structure of incoming jobs. We find that, when physicians work 

in a dedicated queuing system, they are able to attain shorter average LOS and wait times for their 

patients by managing their workloads more efficiently. We suggest that this may be because the dedicated 

system affords physicians a higher level of ownership over patient flow. We find that the motivational 

benefits of the dedicated queuing system outweigh the inefficiencies introduced by un-pooling the queue. 

Thus, our study furthers Schultz and colleagues’ (1998) finding by proposing that queue structure is 

another job design factor that interacts with human behavior in ways that can reverse predicted 

relationships between work system design and performance.   

5.2. Implications for Practice 

Our study has important implications for workplace managers and health care policy makers. Our 

findings suggest that managers of work settings with strategic servers should design work systems to 

mitigate behaviors that benefit the employee to the detriment of customers or the organization. One 
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possible mechanism is to give strategic servers greater ownership and responsibility for managing their 

workflow and to route work evenly across all servers regardless of differences in work pace, which 

removes the benefit of working slower than one’s peers. EDs may benefit from implementing dedicated, 

fair queuing systems in which patients are assigned to physicians immediately following triage. To our 

knowledge, this is not currently in place at most EDs; most EDs employ a pooled queuing system that 

assigns patients to physicians once placed in a bed. Thus, the potential for improvement is significant. 

5.3. Limitations and Future Research 

This study has limitations, and its results should be interpreted accordingly. First, we note the threat of 

omitted variable bias, common to many empirical models. While it would have been helpful to include 

more patient characteristics in our model, such as patient diagnoses or medical comorbidities, these data 

were protected information and not available for use. However, this is not an important threat to validity 

because patients are randomly assigned to physicians rather than by physician choice. This is supported 

by the fact that the average ESI level of patients seen by each physician is less than one standard 

deviation away from the average ESI level of all patients seen in the ED (mean = 3.33, s.d. = 0.64).  

Second, our study is of a single hospital’s ED and its response to a single intervention. The fact that 

our data come from a single ED makes it impossible for us to use another ED as the control in our 

difference-in-differences analysis. While we are confident that the RCA is a good control for our study, 

there would be advantages to using data from another ED with a similar patient population that did not 

implement the PAS system. We were unable to do this in our study because the PAS system was 

implemented in all EDs in the hospital’s network. Though the generalizability of our findings is limited 

because we studied only one ED, we believe our findings have strong theoretical underpinnings. 

Nevertheless, future research could examine a larger sample of EDs to study a wider variety of routing 

policies and queue structures. Given that prior literature has found a variety of different mechanisms that 

may explain the shorter service times in dedicated systems, such research might enable greater clarity in 

which mechanisms are most powerful and under what conditions. In addition, these effects and suggested 

mechanisms could be studied in different empirical contexts for further theory development.  

Third, our study raises the possibility that better flow management—arising from ownership over key 

resources—enables physicians in dedicated queuing systems to reduce their patients’ average wait times 

and LOS. However, we are unable to precisely identify and test the mechanisms conclusively. Instead, we 

suggest these potential mechanisms based on interviews with physicians and observations of their practice 

patterns and leave it to future research to disentangle the mechanisms responsible for the reduced times. 

Fourth, future research could consider how dedicated queuing systems affect patient and physician 

satisfaction, since changes in wait times and LOS may be associated with perceptions of fairness and the 

general satisfaction of both parties. These data are not available from the time period of our study, but 
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have recently become more widely available. 

Lastly, implementing a dedicated queuing system is merely one way to try to attain the goal of shorter 

wait times and LOS in EDs. Future research should consider other mechanisms, such as financial 

incentives or interventions that leverage social pressure (Chan 2013). For example, do physicians increase 

their work rates when provided information about each other’s average LOS? It may be possible to use a 

combination of interventions so that EDs can capture the benefits of pooling while simultaneously 

avoiding the slower service rates that seem to arise from queuing systems where responsibility for 

customers is shared across multiple servers.  

5.4. Conclusions 

Effectively using queue design to create both fairness and efficiency is an important opportunity for 

service organizations. While results may differ across different settings, the mechanisms through which 

changes in LOS occur may help shed light on improvement opportunities in other contexts. Our findings 

are especially timely and could have significant implications for health care delivery as EDs across the 

country contemplate ways to handle the anticipated increases in ED patient volume as a result of the 

recent health reform legislation (Patient Protection and Affordable Care Act 2010). 
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Figure 1. Standard Patient Flow in the Emergency Department 

 
 
Figure 2. Example of physician shift distribution over a 24-hour period 

 
Note: MD numbers across the x-axis are unique physician identifiers. Shaded bars indicate the duration of a 
physician’s shift.  
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Table 1. Summary definition of variables 
 
Variable Description Level of Analysis 

   
Main dependent variable   

ED wait time Logged number of minutes elapsed between patient arrival to ED and MD start.  Patient 
ED length of stay Logged number of minutes elapsed between MD start and bed request (for patients admitted to hospital) or 

discharge from ED (for patients discharged to home or an outside facility). 
Patient 

Discharge rate Number of patients discharged per hour by a given physician in a given 2-hour period of the shift (e.g., 
penultimate 2 hours, final 2 hours). 

Physician-shift  
(2-hour period)  

Independent and control variables 
ESI level 4 indicators for patient’s ESI level (from highest to lowest: 2, 3, 4, 5).§  Patient 
Age Patient age in years. Patient 
MDs on shift Number of all physicians working at any point during this shift. Physician-shift 
Current waiting count Number of patients waiting to be seen by this physician at this time. Patient 
Current patient count Number of patients being seen by this physician at this time. Patient 
Shift number Indicator for what number shift this is for this physician in this dataset. Physician-shift 
ESI level 1 patient present Indicator for presence of ESI level 1 patient ( = 1 for present, = 0 for absent). Patient 
Trauma patient present Indicator for presence of trauma patient ( = 1 for present, = 0 for absent). Patient 
Arrival shift type 3 indicators for type of shift during which patient arrived (AM, PM, overnight). Patient 
Months since March 2007 Indicator for what number month this is in this dataset.† Patient 
Day of week 7 indicators for day of week of shift. Patient 
Main ED Shift location ( = 1 for Main ED, = 0 for Rapid Care Area). Physician-shift 
PAS implemented Indicator for whether PAS was implemented ( = 1 for pre-implementation, = 0 for post-implementation). Physician-shift 
Interaction PAS × Main ED. Physician-shift 

Additional dependent variables 
Lab ordered Indicator for whether lab was ordered ( = 1 for ordered, = 0 for not ordered). Patient 
X-ray ordered Indicator for whether x-ray was ordered ( = 1 for ordered, = 0 for not ordered). Patient 
Admitted to hospital Indicator for whether patient was admitted to hospital upon discharge from ED ( = 1 for admitted, = 0 for 

not admitted). 
Patient 

Died in ED Indicator for whether patient died in ED ( = 1 for died in ED, = 0 for did not die in ED). Patient 
Revisit within 72 hours Indicator for whether patient returned to ED within 72 hours ( = 1 for returned, = 0 for did not return). Patient 
Shift duration Number of hours for which physician worked in ED during this shift. Physician-shift 
ED sojourn time Logged number of minutes elapsed between arrival to ED and bed request (for patients admitted to 

hospital) or discharge from ED (for patients discharged to home or an outside facility). 
Patient 

ED boarding time Logged number of minutes elapsed between bed request and discharge from ED (if admitted to hospital). Patient 
   
§ Although the Emergency Severity Index (ESI) uses five categories, we have four indicators for patient ESI level because we exclude patients of ESI level 1 
from our analysis.  
† This variable is employed to capture linear time trends in lieu of month-year fixed effects where the data do not allow for a difference-in-differences approach.  
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Table 2a. Summary statistics of continuous variables included in models 
 

 Main ED RCA 
 Pre-PAS Post-PAS Pre-PAS Post-PAS 
Variable Mean  SD Mean  SD Mean  SD Mean  SD 
         
1. ED length of stay (minutes) 212.7 210.7 210.3 227.3 46.6 65.1 46.8 61.3 
2. ED wait time (minutes) 43.9 42.9 33.6 30.4 54.8 43.6 46.0 33.4 
3. Discharge rate 1.8 0.9 1.8 0.8 3.3 1.3 3.4 1.4 
4. Age (years) 43.3 24.3 42.5 24.6 28.4 20.6 26.0 20.2 
5. MDs on shift 3.4 0.9 3.7 1.0 1.0 0.2 1.0 0.3 
6. Current waiting count 1.9 1.1 1.7 0.9 3.9 2.6 3.5 2.3 
7. Current patient count 5.3 2.7 5.3 2.7 6.2 3.4 5.9 3.1 
8. Shift number 115.1 72.0 335.5 151.5 135.7 78.4 373.8 126.8 
9. Shift duration (hours) 9.7 1.5 9.2 1.3 10.2 1.2 10.0 1.0 
10. ED sojourn time (minutes) 256.7 210.4 243.9 226.2 101.4 78.2 92.7 69.0 
11. ED boarding time (minutes) 329.0 418.7 165.3 252.0 256.3 390.0 122.5 249.4 
         

Note: N = 217,213. Excludes all observations from August 2008 to account for an acclimation period. 
 
Table 2b. Correlations of continuous variables included in models 
 

Variable 1 2 3 4 5 6 7 8 9 10 11 
            
1. ED length of stay (minutes) 1           
2. ED wait time (minutes) -0.13* 1	            
3. Discharge rate -0.22* 0.22* 1         
4. Age (years) 0.30* -0.12* -0.16* 1        
5. MDs on shift -0.05* 0.07*	   0.13* -0.02* 1       
6. Current waiting count -0.19* 0.50* 0.52* -0.18* 0.13* 1      
7. Current patient count -0.04* 0.33* 0.45* -0.06* 0.08* 0.61* 1     
8. Shift number -0.04* -0.07* 0.08* -0.05* 0.21* 0.01* 0.004* 1    
9. Shift duration (hours) -0.11* 0.11* 0.19* -0.05* 0.12* 0.16*	   0.10* -0.04* 1   
10. ED sojourn time (minutes) 0.98* 0.05*	   -0.15* 0.28* -0.04* -0.10* 0.02* -0.06* -0.09* 1  
11. ED boarding time (minutes) 0.40* 0.07* -0.02* 0.07* -0.02* 0.06* 0.01 -0.17* -0.003* 0.41* 1 
            

Note: N = 217,213. Excludes all observations from August 2008 to account for an acclimation period.  
* p < 0.05 
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Table 2c. Percent of sample by categorical and binary variables included in models 
 

 Main ED RCA 
Variable Pre-PAS Post-PAS Pre-PAS Post-PAS 
     
ESI level 2 7.88 14.05 -- -- 
ESI level 3 74.10 73.70 -- -- 
ESI level 4 17.68 11.85 96.23 96.53 
ESI level 5 0.34 0.40 3.77 3.47 
ESI level 1 patient present 8.78 9.16 9.69 9.92 
Trauma patient present 7.36 27.68 7.62 29.25 
AM shift 34.21 35.55 40.58 37.73 
PM shift 44.59 43.63 53.87 55.99 
Overnight shift 21.20 20.82 5.55 6.28 
2007 57.92 -- 56.23 -- 
2008§ 42.08 14.39 43.77 16.16 
2009§ -- 52.47 -- 54.80 
2010 -- 33.15 -- 29.04 
January 5.78 8.73 6.35 8.59 
February 6.18 8.45 6.63 8.18 
March§ 12.38 9.63 11.81 9.17 
April§ 11.74 9.18 11.18 8.70 
May§ 12.07 9.85 12.24 9.36 
June§ 11.63 8.93 11.25 8.45 
July§ 12.12 9.19 11.44 8.87 
August§ 5.88 4.50 5.96 4.72 
September 5.66 8.10 5.72 8.68 
October 5.55 8.01 5.77 9.17 
November 5.46 7.72 5.75 8.34 
December 5.55 7.69 5.89 7.76 
Sunday 15.15 14.75 15.01 15.09 
Monday 14.89 15.19 15.00 15.22 
Tuesday 14.08 14.11 14.50 14.07 
Wednesday 13.93 13.40 13.72 13.58 
Thursday 13.84 13.86 13.89 13.40 
Friday 13.84 13.95 13.37 13.33 
Saturday 14.27 14.73 14.51 15.31 
Lab ordered 64.12 66.91 8.83 8.05 
X-ray ordered 38.44 39.46 27.37 26.92 
Admitted to hospital 14.11 12.42 0.38 0.30 
Revisit within 72 hours 4.99 5.04 2.89 2.77 
     

Note: N = 217,213. Excludes all observations from August 2008 to account for an acclimation 
period. 
§ Because the study period begins on March 1, 2007 and ends on July 31, 2010, it is not 
surprising that a larger percentage of patients in our dataset presented to the ED in the months 
between March and July (inclusive) and in the years of 2008 and 2009, respectively. Because 
all observations from August 2008 have been excluded, it is also not surprising that this 
percentage is smaller for the month of August. When these summary statistics are produced 
with the inclusion of observations all from January 1, 2007 to December 31, 2010, we obtain 
an approximately uniform distribution of patients across all months of the year. 
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Table 3. Fixed effects models at patient level 
 

 (1) (2) 
Variables Logged ED 

Length of Stay 
Logged ED  
Wait Time 

Main ED 0.642*** 0.377*** 
 (0.0307) (0.0330) 
PAS x Main ED -0.174*** -0.0854** 
 (0.0211) (0.0265) 
ESI level 3 -0.401*** 0.415*** 
 (0.0159) (0.0129) 
ESI level 4 -1.211*** 0.698*** 
 (0.0203) (0.0241) 
ESI level 5 -1.578*** 0.617*** 
 (0.0252) (0.0291) 
Age 0.00773*** -0.00260*** 
 (0.000233) (0.000188) 
MDs on shift -0.00559 0.0148 
 (0.00302) (0.00855) 
Current waiting count 0.00184 0.189*** 
 (0.00171) (0.00561) 
Current patient count 0.000909 0.0201*** 
 (0.00167) (0.00476) 
Shift number -0.000484* -2.51e-05 
 (0.000236) (0.000359) 
ESI level 1 patient present 0.0169** 0.0604*** 
 (0.00528) (0.00806) 
Trauma patient present 0.00844 0.0650*** 
 (0.00505) (0.00562) 
PM shift -0.0605*** 0.0726*** 
 (0.00711) (0.0161) 
Overnight shift -0.0731*** -0.157*** 
 (0.0131) (0.0283) 
Constant 4.546*** 2.298*** 
 (0.0538) (0.0611) 
Observations 217,161 217,213 
Number of ED physicians 40 40 
Adjusted R2 0.519 0.298 
*** p <0.001, ** p <0.01, * p <0.05 
Note: All regressions are estimated at the patient level and include day 
of week controls, month-year fixed effects, and physician fixed effects. 
Standard errors (in parentheses) are heteroskedasticity robust and 
clustered by physician. 
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Table 4. Fixed effects models at physician-shift levels  
 

 (1) (2) (3) (4) (5) 
Variables Discharge Rate 

in First 2 Hours 
of Shift 

Discharge Rate 
in Second 2 

Hours of Shift 

Discharge Rate 
in Penultimate 

2 Hours of Shift 

Discharge Rate 
in Last 2 Hours 

of Shift 

Shift Duration 

Main ED -- -- -- -- 1.060*** 
     (0.166) 
PAS  1.042 1.053* 1.069*** 1.051** -- 
 (0.0275) (0.0245) (0.0190) (0.0204)  
PAS x Main ED -- -- -- -- -0.0904 
     (0.0855) 
Percent of ESI level 3 patients 1.001 1.002*** 1.002*** 1.001* 0.0137*** 
 (0.000641) (0.000430) (0.000440) (0.000404) (0.00162) 
Percent of ESI level 4 patients 1.007*** 1.008*** 1.005*** 1.004*** 0.0325*** 
 (0.000761) (0.000535) (0.000668) (0.000553) (0.00233) 
Percent of ESI level 5 patients 1.012*** 1.007* 1.001 1.006* 0.0311*** 
 (0.00368) (0.00323) (0.00299) (0.00240) (0.00537) 
Average age of patients 1.000 1.000 1.001*** 1.000 -0.0208*** 
 (0.000269) (0.000267) (0.000295) (0.000386) (0.00309) 
MDs on shift 0.982* 0.981* 0.976** 0.968*** -0.331*** 
 (0.00736) (0.00884) (0.00730) (0.00662) (0.0239) 
Average waiting count 1.015 1.014 0.999 1.001 -0.530*** 
 (0.0184) (0.00961) (0.00925) (0.00694) (0.0364) 
Average patient count 1.094*** 1.123*** 1.111*** 1.104*** 0.661*** 
 (0.0172) (0.00861) (0.00510) (0.00432) (0.0260) 
Shift number 1.000 1.000 1.000 1.000 7.06e-05 
 (0.000231) (0.000226) (0.000184) (0.000142) (0.000805) 
Percent of time ESI level 1 
patient present 

0.996 0.995 0.980 1.022 0.0495 

 (0.0279) (0.0186) (0.0172) (0.0161) (0.0541) 
Percent of time trauma patient 
present 

0.998 0.965* 1.000 1.016 -0.0234 

 (0.0185) (0.0157) (0.00994) (0.0132) (0.0479) 
PM shift 0.936*** 1.064** 1.154*** 1.156*** -0.134* 
 (0.0133) (0.0208) (0.0199) (0.0152) (0.0541) 
Overnight shift 0.806*** 1.031 1.094*** 0.980 -1.834*** 
 (0.0203) (0.0382) (0.0225) (0.0235) (0.130) 
Constant -- -- -- -- 6.917*** 
     (0.301) 
Observations 3,922 8,594 10,675 10,905 14,153 
Number of ED physicians 38 39 38 40 40 
Adjusted R2 -- -- -- -- 0.329 
*** p <0.001, ** p <0.01, * p <0.05 
Note: Models (1) – (4) are conditional fixed effects Poisson models estimated at the physician-shift 2-hour period level with 
linear time trends by month, day of week controls, physician fixed effects, and heteroskedasticity robust standard errors. 
Discharge rate reflects the number of patients discharged per hour by a given physician in a given 2-hour period of the shift, and 
coefficients have been exponentiated to show incident rate ratios. Model (5) is a fixed effects linear regression model estimated 
at the physician-shift level with day of week controls, month-year fixed effects, physician fixed effects, and heteroskedasticity 
robust standard errors clustered by physician. Shift duration is expressed in hours.  
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Table 5. Logistic regression models at patient level for alternate explanations and unintended 
consequences 
 

 (1) (2) (3) (4) (5) 
Variables Lab Ordered X-ray 

Ordered 
Admitted to 

Hospital 
Revisit within 

72 hours 
Died in ED 

Main ED 1.451*** -0.103* 1.673*** 0.167*** -- 
 (0.120) (0.0503) (0.102) (0.0446)  
PAS  -- -- -- -- -0.669* 
     (0.301) 
PAS × Main ED -0.0847 -0.0260 -0.188 0.00770 -- 
 (0.0468) (0.0382) (0.132) (0.0506)  
ESI level 2 -- -- -- -- -5.270*** 
     (0.420) 
ESI level 3 -0.693*** -0.508*** -1.007*** 0.0381 -7.457*** 
 (0.0319) (0.0334) (0.0322) (0.0375) (0.538) 
ESI level 4 -2.550*** -0.799*** -2.929*** -0.374*** -8.820*** 
 (0.0430) (0.0476) (0.0804) (0.0633) (1.008) 
ESI level 5 -3.275*** -2.348*** -5.300*** -0.577*** -- 
 (0.0732) (0.117) (0.994) (0.155)  
Age 0.0176*** 0.0221*** 0.0389*** 0.00125* 0.0284*** 
 (0.000652) (0.000937) (0.000692) (0.000515) (0.00435) 
MDs on shift -0.0146 -0.0205 -0.00650 -0.0106 -0.0915 
 (0.0180) (0.0113) (0.0127) (0.0136) (0.0974) 
Current waiting count 0.0131 0.00726 -0.0187 -0.0232** -0.0480 
 (0.00723) (0.00572) (0.0111) (0.00803) (0.0750) 
Current patient count -0.0165*** 0.00217 -9.74e-05 -0.00847 -0.00174 
 (0.00462) (0.00381) (0.00435) (0.00436) (0.0307) 
Shift number  -0.000511 -0.000515* -0.000314 8.50e-05 -7.19e-05 
 (0.000303) (0.000260) (0.000265) (0.000122) (0.000688) 
ESI level 1 patient present 0.0316 -0.0101 -0.0432 0.00331 -0.0577 
 (0.0276) (0.0163) (0.0288) (0.0467) (0.439) 
Trauma patient present 0.0117 0.0241 -0.00760 0.0513 -0.204 
 (0.0183) (0.0148) (0.0286) (0.0369) (0.174) 
PM shift -0.0999 0.0286 0.0460 -0.00747 0.226 
 (0.0552) (0.0274) (0.0338) (0.0327) (0.162) 
Overnight shift -0.175*** -0.0177 0.000590 0.0713 0.459 
 (0.0532) (0.0330) (0.0472) (0.0559) (0.282) 
Constant -0.558*** -0.767*** -4.317*** -3.035*** -1.687* 
 (0.160) (0.0771) (0.122) (0.131) (0.729) 
Observations 193,807 193,807 193,807 193,807 132,952 
Pseudo R2 0.331 0.0679 0.257 0.0110 0.564 
*** p <0.001, ** p <0.01, * p <0.05 
Note: All regressions are logistic regression models estimated at the patient level. Models (1) – (4) include day of 
week controls, month-year fixed effects, and physician fixed effects. Model (5) includes linear time trends by 
month, day of week controls, and physician fixed effects. Model (5) includes previously excluded observations – 
specifically patients of ESI level 1, patients who died in the ED, and trauma patients. Standard errors (in 
parentheses) are heteroskedasticity robust and clustered by physician.  


